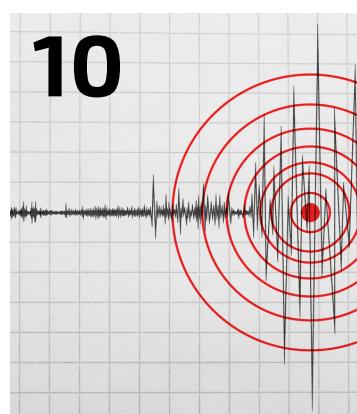



THE OBSERVER REVIEW

JANUARY 2026

CONTENTS

JANUARY


CALIFORNIA EARTHQUAKES
COULD BE BIGGER THAN
IMAGINED

03

FROM SPACE
WEATHER TO
WEATHER

Significant Update in Solar Forcing of the Atmosphere: Solar forcing beyond sunlight irradiance significantly influences atmospheric dynamics...

PRE-EARTHQUAKE
ANOMALIES

The first study focused on changes in the ionosphere, the electrically charged region of the upper atmosphere that enables radio communication and satellite navigation.

FEATURED ARTICLES

12 ELECTROMAGNETIC BIOLOGY

14 EARTHQUAKES
TRIGGERED BY
THE SUN

15 URANUS CLIMATE COOLING:
IF NOT SOLAR WIND...

16 GALACTIC MAGNETIC
REVERSAL IS "LOCAL"

This image of the cosmos, in magnetic view, has been interpreted in terms of the vast emptiness of far-away space.

17 2007 GRAVITY ANOMALY:
POLE SHIFT ACCELERATION

18 208% COSMIC RAY SURGE IN
POLE SHIFT

Up until now we have communicated that the space particle radiation surge could be up to 168% based on the data from the Laschamp geomagnetic excursion.

19 55% LOSS OF EARTH'S
PROTECTIVE MAGNETIC FIELD

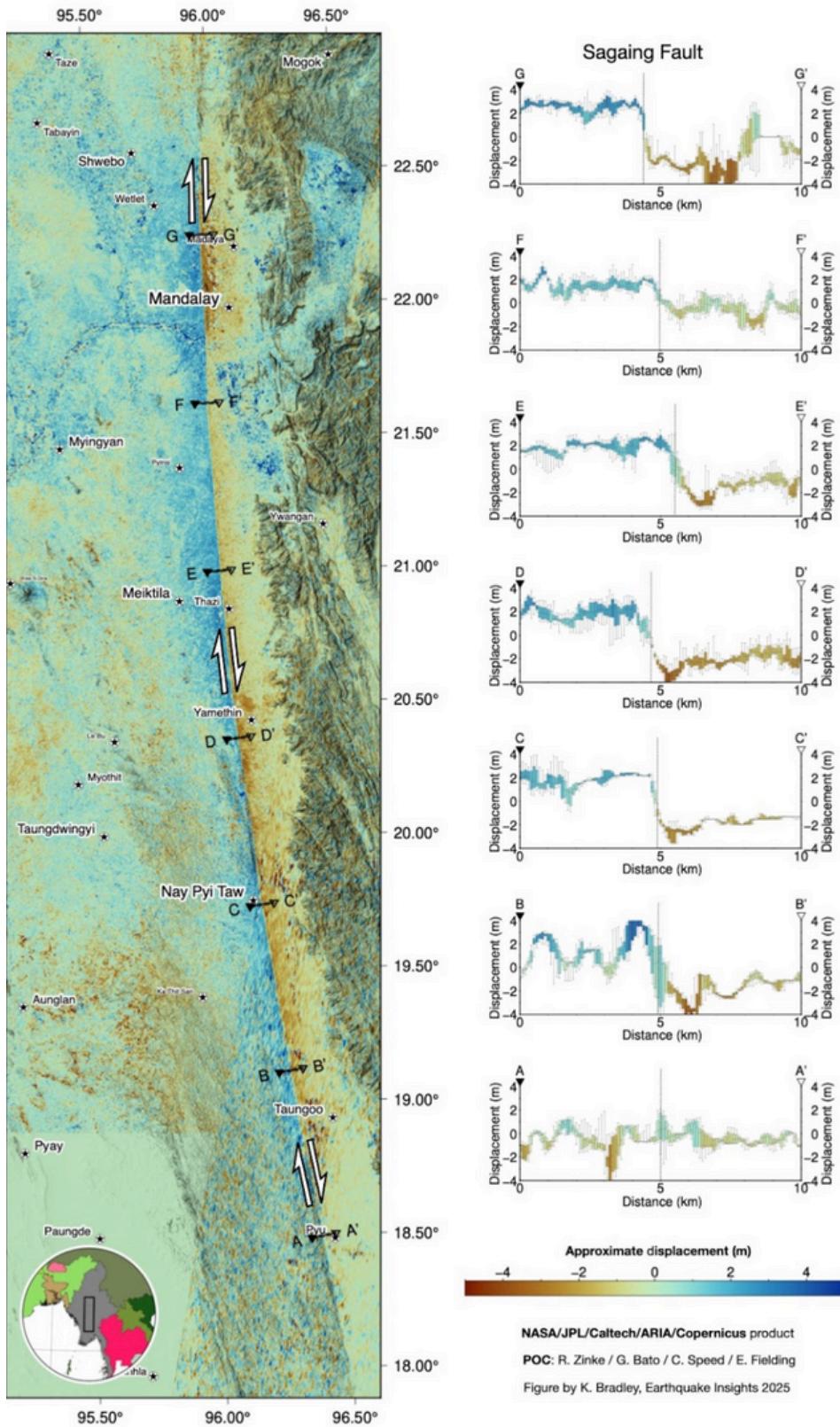
A new ice coring out of Antarctica is throwing a wrench into every single take on the magnetic pole shift - not just that of the mainstream, but also the one put forth by SpaceWeatherNews and Ben Davidson.

20 THE SOLAR MICRONOVA
IS COMING

AND MORE!

CALIFORNIA EARTHQUAKES COULD BE BIGGER THAN IMAGINED

ARTICLE REFERENCED:


[SATELLITE DATA HELPS UNM RESEARCHERS MAP MASSIVE RUPTURE OF 2025 MYANMAR EARTHQUAKE](#)

"UNDERSTANDING THE PHYSICS OF 'MATURE' FAULTS HELPS UNDERSTAND THE GENERAL MECHANICS OF THE EARTH'S CRUST, WHICH IMPROVES EARTHQUAKE HAZARDS MODELS GLOBALLY"

A powerful earthquake that struck central Myanmar on March 28, 2025, is forcing scientists to rethink how large and damaging future earthquakes could be on some of the world's most famous faults, including California's San Andreas Fault. The event, a magnitude 7.8 rupture along the Sagaing Fault, offered researchers a clean look at how energy moves through what geologists call a "mature" fault system. The findings suggest that earthquakes on similar faults may be more efficient, more extensive, and potentially more destructive than many current hazard models assume.

Earthquakes are typically chaotic. Faults bend, splinter, and branch, and ruptures often stall or lose energy as they move toward the surface. The Myanmar earthquake was different. It occurred along a remarkably straight, long-lived strike-slip fault that has been slipping in the same direction for millions of years. Over geologic time, that repeated motion has smoothed the fault, grinding down rough edges and structural barriers.

The result was a rupture that propagated nearly 500 kilometers, one of the longest strike-slip earthquakes ever recorded. For comparison, that is roughly the distance from Southern California to Northern California. This kind of length matters because, in earthquakes, longer ruptures generally mean larger magnitudes and stronger shaking over wider areas.

Because armed conflict and infrastructure damage made on-the-ground fieldwork impossible, scientists relied entirely on satellite-based remote sensing. Using optical image correlation and radar interferometry, they tracked ground movement with centimeter-scale precision across hundreds of kilometers.

Radar interferometry, or InSAR, works by comparing radar signals sent from satellites before and after an earthquake. Tiny changes in the time it takes for the signal to return reveal how the ground moved. In this case, the data showed horizontal displacements of three to five meters along much of the fault, and crucially, that movement extended all the way to the Earth's surface. In many earthquakes, scientists observe a "shallow slip deficit." Deep in the crust, faults may slip several meters, but near the surface that motion is mysteriously reduced or spread across many small cracks. This reduces the amount of slip directly on the main fault trace and can limit surface damage. The Myanmar earthquake showed no such deficit. The slip that occurred deep underground was transmitted almost entirely to the surface. This indicates that on mature, smooth faults, energy does not diffuse outward into a wide damage zone. Instead, it stays focused on the main fault plane.

Connecting to seismic activity in California, this is a critical insight. The San Andreas Fault is also a mature, strike-slip fault. If it behaves similarly during a major rupture, surface displacements and near-fault shaking could be stronger than expected, especially in regions close to the fault line.

Another striking result was the earthquake's ability to jump across fault segments that scientists once thought might stop or slow a rupture. The Myanmar event effectively linked multiple sections into one continuous chain reaction. This challenges long-standing assumptions used in seismic hazard models, which often treat fault segments as partially independent.

The study also found a pattern known as slip predictability. Portions of the fault that had ruptured in the twentieth century slipped less in 2025, while sections that had not broken since the nineteenth century experienced the largest displacements. This suggests that long-unruptured sections of mature faults may be capable of releasing far more strain than previously assumed.

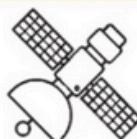
Applied to California, this raises questions about segments of the San Andreas and related faults that have been quiet for centuries.

The core message from the Myanmar earthquake is not that a California earthquake is imminent, but that it could be larger and more efficient than many models currently anticipate. Mature faults appear capable of transmitting energy cleanly from depth to the surface, sustaining rupture over extraordinary distances, and producing intense ground motion near the fault trace.

This has direct consequences for building codes, infrastructure design, and emergency planning. If shaking and surface displacement are underestimated, systems such as transportation corridors, water pipelines, and power lines may be more vulnerable than expected.

SPACE WEATHER SATELLITE LOSSES; SIGN OF THE FUTURE

ARTICLE REFERENCED:


[HTTPS://WWW.SCIENCEDIRECT.COM/SCIENCE/ARTICLE/PII/S1364682625002780](https://www.sciencedirect.com/science/article/pii/S1364682625002780)

[HTTPS://WWW.NATURE.COM/ARTICLES/S41598-025-29518-W](https://www.nature.com/articles/s41598-025-29518-w)

The loss of Intelsat-33e on October 19, 2024, and the machine-learning reconstruction of EgyptSat-1's power-subsystem stressors point to the same operational reality: satellite failures are increasingly shaped by cumulative space-weather exposure, not just single dramatic events. Together, these two case studies outline a credible pathway from solar eruptions to geospace radiation hazards, then into subsystem degradation, hard-to-diagnose anomalies, and in worst cases, catastrophic loss. They also hint at what "resilience" will mean going forward: better forecasting, better physics in operational models, and better on-orbit health monitoring that can recognize space-weather fingerprints early enough to intervene.

ON THE GEOSPACE CONDITIONS IN RELATION TO THE INTELSAT-33E SATELLITE FATAL FAILURE IN OCTOBER 2024

SETTING & DATA

Satellite: Intelsat-33e.
Orbit: Geostationary.
Failure: Oct 19, 2024.

SPACE WEATHER CONDITIONS

Data: OMNI HRO, GOES-16,
Dst index, Kp index, AE index e Sym-H index.
Interplanetary Shock: Oct 6 and 10, 2024.
Dst min: - 333 nT
Prolonged electron flux >2 MeV.

SATELLITE RESPONSE

Internal charging
induced by sustained radiation
Anomaly → Fragmentation

Conclusion: Prolonged exposure to radiation
likely caused catastrophic failure of the satellite's
internal payload.

Space-weather levels are often communicated as a KP index or geomagnetic storm risk. However, this measuring system does not always prove accurate for their effects on satellites in orbit.

In the days leading up to the failure Intelsat-33e the near-Earth environment was not merely disturbed once by traditional measuring factors. It was driven through a sequence: shock fronts, a geomagnetic storm beginning October 6, and then a second, severe storm peaking around October 11.

The critical detail is what followed: What mattered most was what happened next: very high-energy electrons surged and stayed elevated for several days. This buildup peaked between October 13 and 18 and remained high right up until the satellite failure on October 19.

That chronology matters because GEO satellites do not just “ride out” a storm. They accumulate radiation exposure. For many failure modes, what drives risk is not the storm peak but the integrated fluence across the recovery phase, when the outer radiation belt is energized and sustained.

This shifts the operational question from “How strong was the storm?” to “How long did the satellite sit in a hazardous electron environment, and what charging dose did it accumulate?”

The Intelsat-33e analysis describes a familiar chain of events driven by the Sun. Large eruptions from the Sun collided with fast-moving streams of solar wind, intensifying the flow of energy into Earth’s magnetic environment.

This stirred up repeated disturbances and strong electromagnetic waves that are known to push electrons to extremely high energies and move them into regions where satellites orbit.

The key takeaway from the timeline is simple: the satellite failed only after this high-energy particle environment had built up and stayed intense for several days.

Intelsat-33e reads like a warning about “storm sequences,” not isolated storms. A moderate storm can precondition the belt, and a subsequent severe storm can then drive a prolonged enhancement where the real damage accumulates. If GEO operations continue to treat recovery-phase conditions as “post-event normalizing,” similar failures remain plausible.

Additionally, where Intelsat-33e illustrates a plausible pathway to loss, the EgyptSat-1 work shows how to detect coupling earlier, using monitoring that integrates space weather inputs with satellite positioning.

EgyptSat-1 was a low Earth orbit satellite that failed after about 40 months of operation, with the root cause unresolved due to limited onboard diagnostics. The referenced study addresses that gap by introducing a four phase process.

PREPROCESSING: SPACE-WEATHER AND TELEMETRY TIME SERIES

TWO-STAGE FEATURE SELECTION: RBM FOR NONLINEAR STRUCTURE, THEN MUTUAL INFORMATION FOR TARGET RELEVANCE)

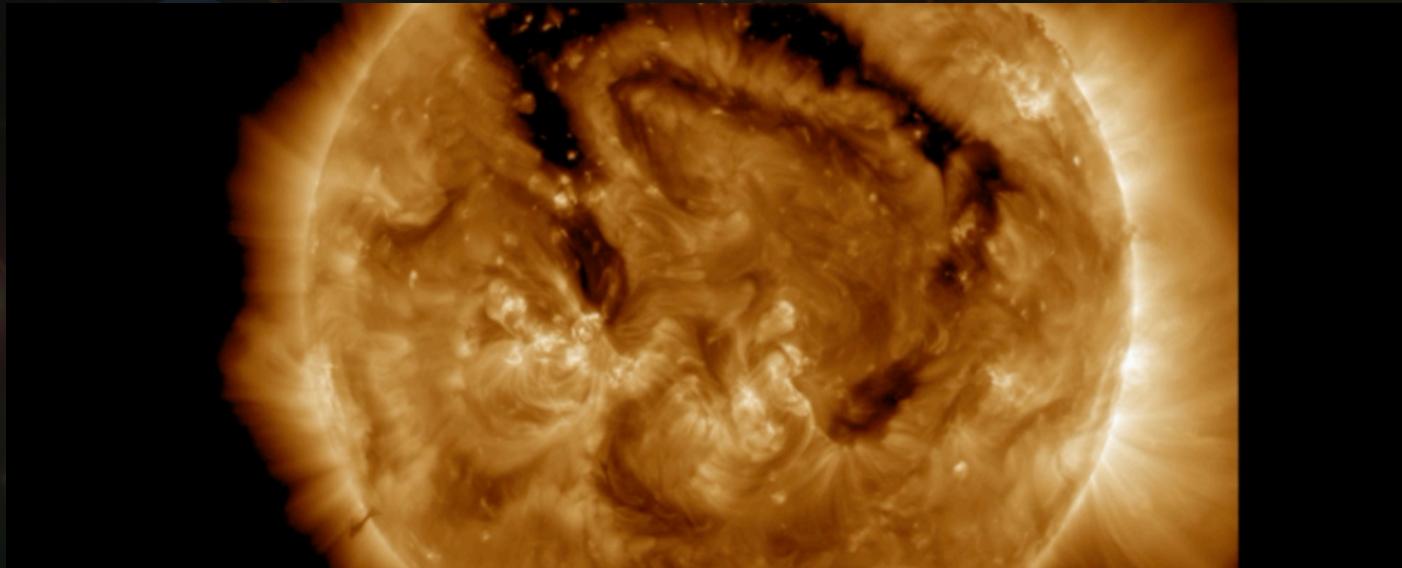
PREDICTIVE MODELING WITH SEVERAL MACHINE-LEARNING PROGRAMS

ANOMALY DETECTION AND VALIDATION: LOOKING AT LASTING ANALYSIS AND COINCIDENCE TESTING VERSUS DIRECT KP SPACE WEATHER DISTURBANCES.

The key finding was that the effects did not show up immediately. On average, the satellite responded about three days after being disturbed. That time window made sense both mathematically and physically, and it supports the idea that satellite components can slowly wear down or fail some time after a space weather event, rather than right away.

Even though the exact numbers will differ from satellite to satellite, the bigger takeaway is clear. You can teach a system what normal, healthy power behavior looks like while space conditions are changing, and then watch for anything that starts to drift off that pattern in real time. In simple terms, you do not have to wait until a satellite fails to realize that space weather is putting it under stress.

The Intelsat-33e failure shows that powerful space weather events can leave behind dangerous radiation conditions that last for days, not just hours. During that time, satellites can slowly build up electrical charge inside their components, eventually leading to serious damage or total failure.


The EgyptSat-1 case shows something else that is just as important. Even when engineers cannot immediately identify a single cause for a problem, combining a satellite's own health data with space weather monitoring can still reveal meaningful patterns.

Those patterns can act as early warning signs that a satellite is under stress, allowing operators to respond before a minor issue turns into a major failure.

FROM SPACE WEATHER TO WEATHER

ARTICLE REFERENCED:

[SOLAR WIND-IONOSPHERE-TROPOSPHERE COUPLING VIA THE POLAR BRANCH OF THE GLOBAL ELECTRIC CIRCUIT](#)

Significant Update in Solar Forcing of the Atmosphere: Solar forcing beyond sunlight irradiance significantly influences atmospheric dynamics through the global electric circuit (GEC), particularly in polar regions where solar wind-ionosphere-troposphere coupling is prominent.

Solar storms and solar flares can impact ionospheric electric potential and air conductivity as well as current density in the atmospheric circuit. These impact the electrodynamics of cloud and aerosol boundaries.

A new study is revealing more about how these processes unfold. Its findings reveal correlations between solar parameters and atmospheric responses, including a linear relationship between atmospheric potential gradient and modeled overhead ionospheric potential, changes in the sun's magnetic field impact surface pressure strongly at the polar region.

In our books and on our YouTube channel we have spent 15 years preaching that this science was important to include in climate models. The entire chain of the forcing process has been cloudy, even while the starting block (space weather) and finish line (earth weather) were clear.

Now, those clouds are parting and if there is any remaining merit at all in the climate scientists of the world, this mechanistic action (which can now be modelled) deserves to become part of the official lexicon.

PRE-EARTHQUAKE ANOMALIES

ARTICLE REFERENCED:

HUMAN RESPONSES TO MAGNETIC AND HYPOMAGNETIC FIELDS:

AVAILABLE EVIDENCE AND POTENTIAL RISKS FOR DEEP SPACE TRAVEL

The first study focused on changes in the ionosphere, the electrically charged region of the upper atmosphere that enables radio communication and satellite navigation. Using dense networks of GNSS and IRNSS receivers across northern India, along with ionosonde and magnetometer data, researchers tracked variations in Vertical Total Electron Content, foF₂, and ionospheric layer height.

What stood out was timing. Distinct ionospheric anomalies appeared approximately 12 days before both earthquakes, including the relatively modest magnitude 4.0 New Delhi event and the much larger magnitude 7.7 Myanmar earthquake. These disturbances took the form of sharp increases and decreases in electron density, with peak variations exceeding 200 percent relative to background conditions.

CRUCIALLY, THESE ANOMALIES OCCURRED DURING GEOMAGNETICALLY QUIET PERIODS, WITH NO SIGNIFICANT SOLAR FLARES, GEOMAGNETIC STORMS, OR HIGH-SPEED SOLAR WIND STREAMS TO EXPLAIN THEM. THIS STRONGLY SUPPORTS A SEISMIC ORIGIN RATHER THAN A SPACE-WEATHER ONE.

In addition to electron density changes, the Indian study documented notable magnetic field perturbations. Variations on the order of tens to over one hundred nanotesla were observed from hours to two days before both earthquakes. These magnetic deviations are consistent with stress-activated electric currents in the crust, a mechanism long proposed in lithosphere-atmosphere-ionosphere coupling models.

This magnetic behavior echoes earlier observations from other regions, where ultra-low-frequency magnetic anomalies were detected days before major earthquakes such as Kobe in 1995 and the Izu Islands swarm in 2000. While the amplitude and exact timing vary by event and geology, the recurring presence of pre-seismic magnetic anomalies suggests that electromagnetic processes accompany the final stages of stress accumulation in the crust.

THE SECOND STUDY, EXAMINING A HISTORIC MAGNITUDE 8 EARTHQUAKE AFFECTING PORTUGUESE TERRITORY IN FEBRUARY 1969, OFFERS AN IMPORTANT COMPLEMENTARY PERSPECTIVE. INSTEAD OF FOCUSING ON THE IONOSPHERE, IT INVESTIGATED GEOMAGNETIC INCLINATION CHANGES, ATMOSPHERIC ELECTRIC FIELD VARIATIONS, AND ASSOCIATED TEMPERATURE INCREASES IN WATER PRIOR TO THE EARTHQUAKE.

Researchers found that geomagnetic anomalies recorded days before the event coincided with changes in atmospheric electric fields, which may have induced rotations of water molecule dipoles.

This process can release heat, leading to localized temperature increases. Elevated water temperatures, in turn, can weaken rocks, alter chemical reaction rates, and increase pressure within faults by expanding fluids and opening fractures.

Seismic wave velocities recorded after the event showed systematic differences with latitude, consistent with temperature-dependent changes in material properties. This provides indirect evidence that thermal anomalies were present before rupture and were spatially linked to the earthquake source region.

While the mechanisms differ in detail from ionospheric TEC disturbances, both studies point to a shared principle: electromagnetic and thermodynamic processes respond to crustal stress well before mechanical failure occurs.

IN THE IONOSPHERE, THIS COUPLING MANIFESTS AS LOCALIZED CHANGES IN ELECTRON DENSITY AND PLASMA DYNAMICS. AT THE SURFACE AND BELOW, IT APPEARS AS MAGNETIC ANOMALIES, TEMPERATURE INCREASES, AND ALTERED SEISMIC WAVE SPEEDS.

NONE OF THESE SIGNALS ALONE IS SUFFICIENT FOR PREDICTION, BUT THEIR CONVERGENCE ACROSS INDEPENDENT SYSTEMS STRENGTHENS THEIR CREDIBILITY AS GENUINE PRECURSORS.

ELECTROMAGNETIC BIOLOGY

ARTICLE REFERENCED:

[HTTPS://PUBMED.NCBI.NLM.NIH.GOV/41331283/](https://pubmed.ncbi.nlm.nih.gov/41331283/)

[HTTPS://WWW.SCIENCEDIRECT.COM/SCIENCE/CHAPTER/EDITED-VOLUME/ABS/PII/B9780443416248000255](https://www.sciencedirect.com/science/chapter/edited-volume/abs/PII/B9780443416248000255)

Magnetic fields generated by Earth are extraordinarily weak compared to those used in medical imaging or industrial applications. Earth's static magnetic field is roughly fifty microtesla. Schumann resonances oscillate at frequencies measured in single digits of hertz. Yet biological systems appear capable of detecting, responding to, and in some cases depending on these signals.

This presents a paradox. Classical biology offers no obvious receptors that should respond to fields this subtle. Cells are warm, noisy, and chemically complex. Any magnetic influence should be drowned out by thermal motion.

And yet, consistent experimental evidence suggests otherwise.

Migratory animals navigate using geomagnetic cues. Cellular processes respond to altered magnetic environments. Physiological and behavioral changes have been reported under hypomagnetic conditions, where Earth's magnetic field is artificially reduced.

To resolve this paradox, researchers have turned to mechanisms that operate below the level of classical biochemistry.

One of the most compelling candidates for explaining magnetic sensitivity in biology is the radical-pair mechanism.

At its core, this mechanism involves short-lived molecular intermediates known as radical pairs. These are pairs of molecules or molecular fragments that each carry an unpaired electron. The spins of these electrons can exist in different quantum states, and crucially, weak magnetic fields can influence how those states evolve.

In biological systems, radical pairs are formed during specific biochemical reactions, particularly those involving light-sensitive proteins such as cryptochromes. These proteins are found across plants, insects, birds, and humans. In migratory birds, cryptochromes located in the retina are thought to participate in magnetically sensitive chemical reactions that provide directional information.

What makes this mechanism remarkable is that it allows magnetic fields far weaker than thermal noise to influence reaction outcomes. The magnetic field does not push molecules around in a mechanical sense. Instead, it subtly biases the probability of one chemical pathway versus another by altering electron spin dynamics.

This is not classical magnetism. It is quantum biology.

THE REVIEW ON WEAK MAGNETIC FIELDS ARGUES THAT THE RADICAL-PAIR MECHANISM MAY EXTEND WELL BEYOND ANIMAL NAVIGATION. IN PRINCIPLE, IT COULD MEDIATE BIOLOGICAL RESPONSES TO STATIC MAGNETIC FIELDS, EXTREMELY LOW FREQUENCY FIELDS, AND EVEN HYPOMAGNETIC ENVIRONMENTS.

IF TRUE, THIS WOULD OFFER A UNIFYING EXPLANATION FOR A WIDE RANGE OF OBSERVED ELECTROMAGNETIC EFFECTS ACROSS SPECIES AND SCALES.

A key challenge remains. How do fleeting quantum events inside molecules scale up into physiological or behavioral changes?

The answer likely lies in amplification.

BIOLOGICAL SYSTEMS ARE BUILT FROM CASCADING PATHWAYS. A SMALL CHANGE IN REACTION YIELD CAN ALTER SIGNALING MOLECULES, GENE EXPRESSION, CIRCADIAN TIMING, OR REDOX BALANCE. OVER TIME, THESE SMALL SHIFTS CAN PROPAGATE UPWARD, INFLUENCING CELLULAR METABOLISM, NEURAL FIRING PATTERNS, HORMONE RELEASE, AND BEHAVIOR.

Importantly, cryptochromes themselves are deeply embedded in circadian biology. They help regulate internal clocks, sleep-wake cycles, and metabolic rhythms. If magnetic fields influence cryptochrome chemistry, then electromagnetic exposure may intersect directly with biological timekeeping.

This is where Earth's natural electromagnetic rhythms enter the picture.

EARTHQUAKES TRIGGERED BY THE SUN

ARTICLE REFERENCED:

THE INFLUENCE OF GEOMAGNETIC STORMS ON GLOBAL MAIN SHOCK EARTHQUAKE OCCURRENCE: A STUDY OF SOLAR WIND PARAMETERS AND SEISMIC ACTIVITY

BY: BEN DAVIDSON

The study focuses on a severe geomagnetic storm around mid-May 2024 and examines a set of main shock earthquakes that occurred afterward across different regions.

The authors emphasize that the relationship is not immediate and that the relevant time delays can be on the order of roughly 50 to 130 days in their examples.

That timing matters because it contrasts with another line of research the paper also discusses, where ionospheric anomalies (often measured via total electron content, TEC) have been reported hours to several days before some earthquakes.

In other words, the paper is dealing with a different possible coupling timescale.

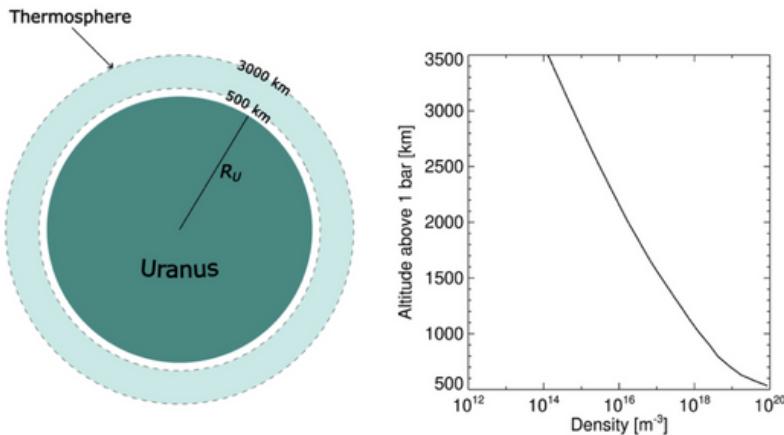
The paper introduces a “Tectonic Index” concept intended to compare stress and strain across regions.

The authors argue that larger earthquakes appear in regions classified as having moderate tectonic index values, while some higher index regions show smaller events, suggesting that you cannot reduce earthquake magnitude to a single index.

A major confounder in earthquake precursor research is that the ionosphere is strongly influenced by solar and geomagnetic activity. If you see a total electron content anomaly, you have to ask: is it driven by earthquake preparation processes, or by space weather?

THE PAPER CITES STUDIES SUGGESTING THAT TEC ANOMALIES CAN APPEAR BEFORE EARTHQUAKES, AND IT FRAMES GEOMAGNETIC STORMS AS AN EXTERNAL DRIVER THAT CAN ALSO GENERATE TEC CHANGES.

Quartz can generate electric charge under mechanical stress.


The paper references the idea that geomagnetic disturbances might enhance crustal electrical conditions in a way that interacts with piezoelectric behavior, potentially influencing microcrack growth or fluid movement.

URANUS CLIMATE COOLING: IF NOT SOLAR WIND...

ARTICLE REFERENCED:

[URANUS' LONG-TERM THERMOSPHERIC COOLING IS UNLIKELY TO BE PRIMARILY DRIVEN BY THE SOLAR WIND](#)

BY: BEN DAVIDSON

Critical URANUS Update: A new study refutes the hypothesis that long-term cooling of Uranus' thermosphere is primarily driven by changes in solar wind kinetic power.

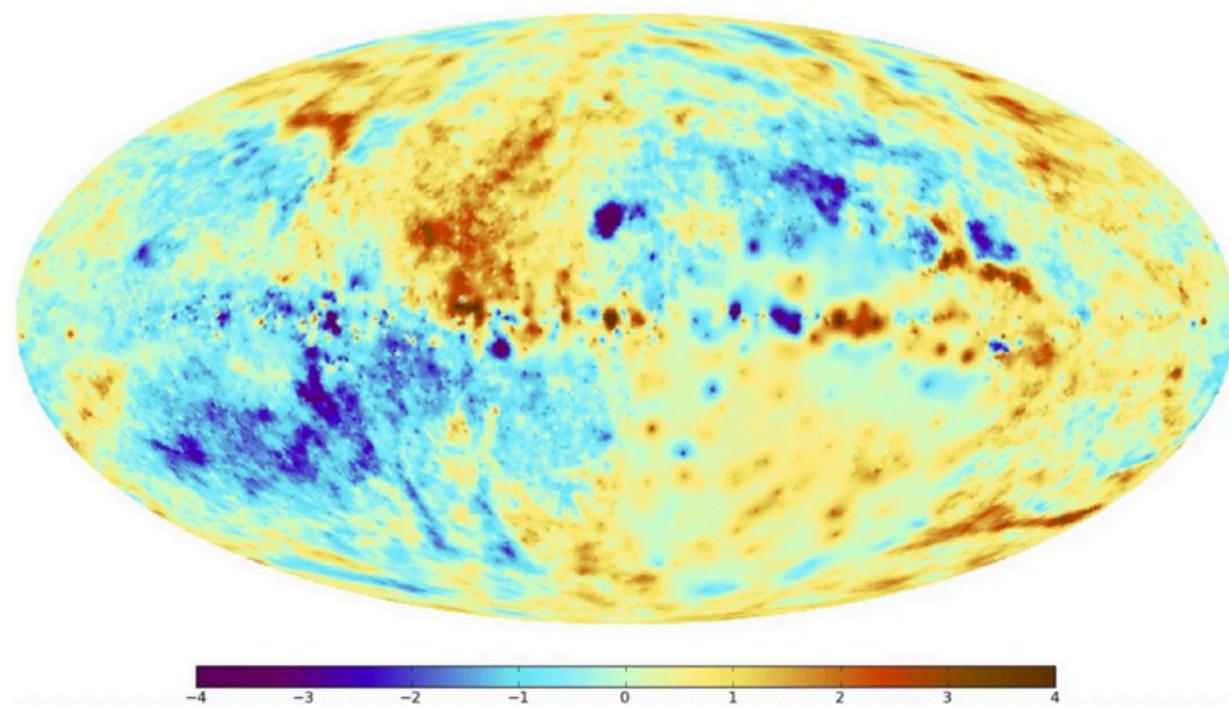
The study demonstrates that solar wind dynamic pressure and kinetic power at Uranus have increased by ~28–40% since the start of solar cycle 24 (late 2008), spanning from solar minimum to maximum and continuing upward trends across comparable cycle phases, while thermospheric temperatures have continued to steadily decrease over the same 16-year period.

The authors conclude that solar wind variations are unlikely to be the dominant driver. The findings highlight the need to explore alternative mechanisms, such as internal planetary processes or other auroral/magnetospheric couplings, to explain Uranus' anomalous thermospheric behavior. This is where the observers come in.

The only other option is that this is the cooling aspect of the Uranus magnetic pole shift, which NASA announced last year. Neptune had its major cooling a few years ago, and Pluto took its hit in about 2019. The solar system shift is marching closer to the inner solar system.

GALACTIC MAGNETIC REVERSAL IS "LOCAL"

ARTICLE REFERENCED:


[A THREE-DIMENSIONAL MODEL FOR THE REVERSAL IN THE LOCAL LARGE-SCALE INTERSTELLAR MAGNETIC FIELD](#)

BY: BEN DAVIDSON

This image of the cosmos, in magnetic view, has been interpreted in terms of the vast emptiness of far-away space. A new study suggests that a significant fraction of it is actually a very local effect- as local as the galactic magnetic field interacting with the local solar system environment.

The new study is confirming what a few careful scientists have suggested before - and which we have insisted since 2019 - that the galactic magnetic reversal is right here, right now, its what is happening.

This new study does not take the data and implications to that extreme, opting instead to suggest that the locality of the galactic magnetic reversal could be anywhere from "upon us now" to "close, astronomically". As a matter of fact, this is precisely the data I would expect to see if the galactic current sheet is here now.

2007 GRAVITY ANOMALY: POLE SHIFT ACCELERATION

ARTICLE REFERENCED:

EARTH'S ONE BREATH: THE 2007 GRAVITY ANOMALY AS PLANETARY-SCALE VALIDATION OF A GRADIENT TRANSIENT

BY: BEN DAVIDSON

There is a new wrinkle to the most significant acceleration of the ongoing magnetic pole shift so far - the 2006-2007 acceleration that took us from losing 5% of the field strength per century to 5% per decade, and which nearly doubles the speed of the magnetic pole shift.

A new study is demonstrating that a dramatic gravity anomaly also occurred in 2007, and that it was directly triggered by the 2007 geomagnetic jerk process, which is tied to the acceleration event at that time.

Previously, this dramatic gravity anomaly had been attributed to a mineral change in the mantle, but the timing and mechanism and connection of the geomagnetic and geodesic gravity is now no longer a fringe concept.

208% COSMIC RAY SURGE IN POLE SHIFT

ARTICLE REFERENCED:

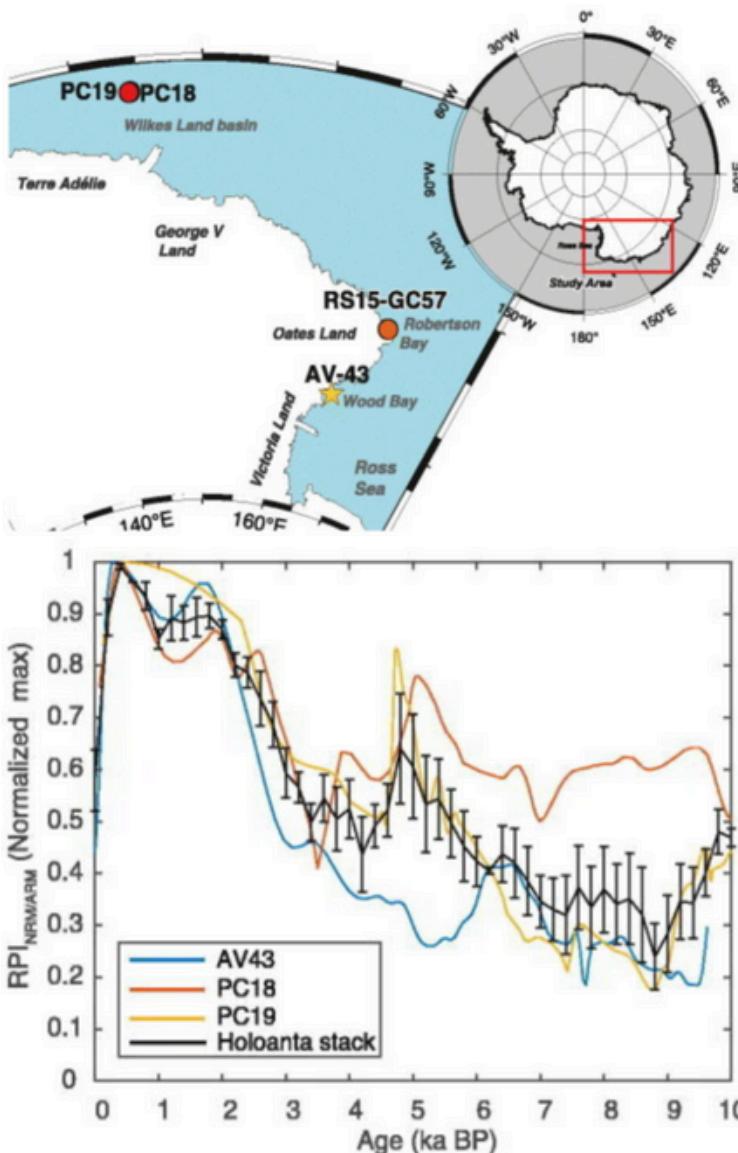
[ATMOSPHERIC 10Be FROM TALOS DOME \(EAST ANTARCTIC\) ICE CORE RECORDS GEOMAGNETIC DIPOLE INTENSITY FROM 170 TO 270 KA BP](#)

BY: BEN DAVIDSON

Up until now we have communicated that the space particle radiation surge could be up to 168% based on the data from the Laschamp geomagnetic excursion. This is extreme, and more than explains the dramatic environmental and biological impacts that cause these events to trigger spikes in species extinction.

Now a new study from Antarctica based on a deeper core has clocked the particle flux increase during the Iceland Basin Excursion at 208%. This event, which occurred ~190,000 years ago, is one of only 3 or 4 known excursions that are worse than Laschamp, and none of them were in the last 65,000 years.

The update and scientific analysis is complex, but the conclusion is simple: These excursions have a dramatic impact on how much space particle radiation enters the atmosphere. The profound climatological and ecological impacts documented during these excursions are no mystery - and we know the exact "what" and "how" of the earth changes in the years ahead.



55% LOSS OF EARTH'S PROTECTIVE MAGNETIC FIELD

ARTICLE REFERENCED:

IMPROVING THE RECONSTRUCTION OF HOLOCENE GEOMAGNETIC PALEOSECULAR VARIATION IN THE ANTARCTIC REGION

BY: BEN DAVIDSON

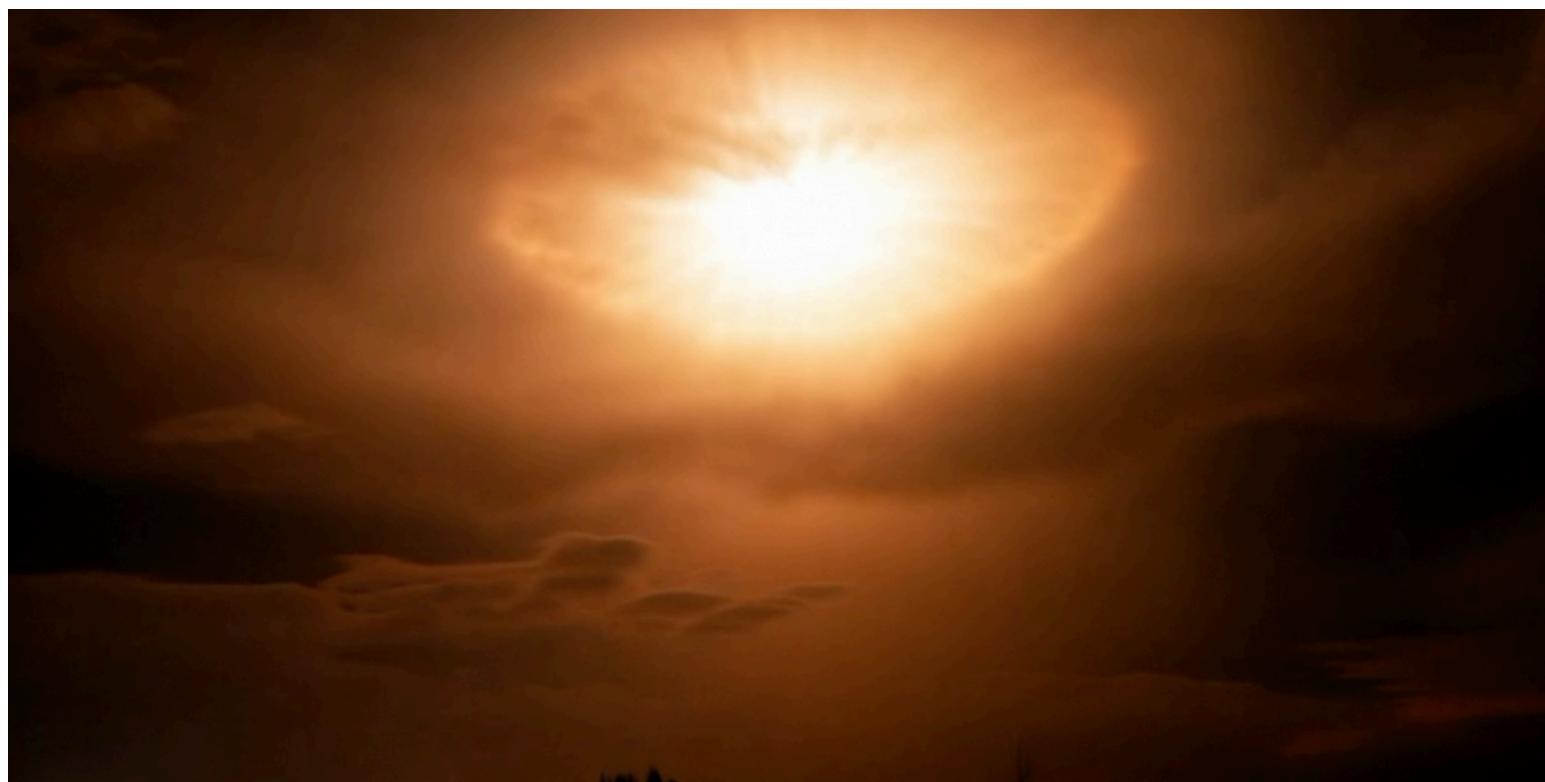
A new ice coring out of Antarctica is throwing a wrench into every single take on the magnetic pole shift - not just that of the mainstream, but also the one put forth by SpaceWeatherNews and Ben Davidson.

The data, which is visible in the chart pictured here, shows the rapid drop in magnetic field strength right now.

This indicates that the magnetic field has actually dropped much more off the peak than anyone realized, and that it has been ongoing for longer than most believed.

Everyone had believed that the magnetic changes on earth really began in the middle of the 1800s, and by Ben Davidson's calculation we have lost about 30% since that time up to now. However this collapse curve here begins in the 1600s, and it shows that we have lost 55% of the magnetic field.

Interestingly, when extrapolating the curve and data here, the magnetic pole shift still occurs in the 2040s - This is a wildly different take on the starting time and the progression, but at the finish line there is no difference.


THE SOLAR MICRONOVA IS COMING

ARTICLE REFERENCED:

[HTTPS://ETHESES.DUR.AC.UK/16357/](https://etheses.dur.ac.uk/16357/)

[HTTPS://GGS.OPENJOURNALS.GE/INDEX.PHP/GGS/ARTICLE/VIEW/10461](https://ggs.openjournals.ge/index.php/GGS/article/view/10461)

BY: BEN DAVIDSON

Review of the Disaster Cycle Genesis and Micronova Theory by Ben Davidson: The disaster cycle is triggered by a galactic magnetic reversal that impacts that reversal of magnetic environment on the entire solar system delivers, and triggers the solar micronova by delivering accretion material and the "magnetic kick" of the galactic magnetic reversal.

Two New Studies: (1) A micronova event was extremely well studied, and it was found to have a pole reversal immediately before the micronova, indicating a relationship between them.

(2) The local galactic magnetic fields, and their reversal, are the cause of magnetic pole shifts on earth.

What You Should Know: The galactic fields absolutely are responsible for the pole shift here on earth, and throughout the solar system, and the imparting of that pole reversal on the sun, it will have the micronova just as the star in the first study. We have already needed the solar micronova to match the nova-level isotopes timing arrival in the disaster cycle, the ancient cultures' counterintuitive fear of the sun, the stories of red and black sun events throughout history - some unquestionably not related to eclipses. The two nova triggers are delivered by the galactic magnetic reversal, and it is the only way to unlock the crust from the mantle while also recharging earth's magnetic field for the next cycle.

Are You Ready for What's Coming?

BEN DAVIDSON

LIVE WINTER TOUR 2025

Omaha, NE

~~January 29,
2025~~

San Diego, CA

~~January 13,
2025~~

Orlando, FL

January 10,
2026

Dallas, TX

February 21,
2026

Las Vegas, NV

March 7, 2026

EVENT CAPACITY: 80

TICKET

\$200

ECHOES IN TIME

A Deep Dive into Micronova Cosmology

DR. AUGUST DUNNING
APRIL 17-21, 2026

OBSERVER
RANCH
Campground for Today, Education for Tomorrow

[CLICK FOR TICKETS](#)

Campground for Today, Education for Tomorrow

DR. AUGUST DUNNING

APRIL 24-28, 2026

- Dry Fasting Fundamentals
- How the Body Shifts to Repair Mode
- Safety Principles & Physiological Markers
- How to Prepare

THE PHOENIX PROTOCOL

DRY FASTING FOR HEALTH AND LONGEVITY

4509 CR 123
Penrose, CO 81240

[CLICK FOR TICKETS](#)

POLE SHIFT

WITH

THE ETHICAL SKEPTIC

MAY 1-5, 2026

OBSERVER
RANCH

[CLICK FOR TICKETS](#)

OBSERVER RANCH

Campground for Today, Education for Tomorrow

INTRODUCING THE OBSERVER RANCH MEMBERSHIP!

Year-Round Access

Enjoy year-round access, exclusive discounts, and special perks—while supporting community education, outdoor exploration, and our mission to inspire lifelong learning.

Your Membership Includes:

- Access to Observer Ranch during open hours
- Use of the Learning Center & Library
- **FREE** admission to member-only events
- Discounts on select special events
- and store promotions
- Two complimentary nights in one of our Planet RVs

[**CLICK FOR MORE INFORMATION**](#)

THANK YOU!

**WE HOPE YOU ENJOYED OUR JANUARY ISSUE!
WE APPRECIATE YOUR QUEST AND LOVE FOR KNOWLEDGE
ABOUT SPACE AND OUR GREATER COSMOS.**

HAVE A TOPIC/DISCUSSION YOU WANT FEATURED?

Email observerreview@observerranch.com with a topic
that you'd love to see an article written on!

